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In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and
deterministic procedures applied to a finite number of ‘simulator’ particles are used to
model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for
DSMC, chemical reactions are decoupled from the specific particle pairs selected for colli-
sions. Information from all of the particles within a cell, not just those selected for colli-
sions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based
methods, MCM can be used with any viscosity or non-reacting collision models and any
non-reacting energy exchange models. It can be used to implement any reaction rate for-
mulations, whether these be from experimental or theoretical studies. MCM has been pre-
viously validated for steady flow DSMC simulations. Here we show how MCM can be used
to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared
with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady
shock-expansion tube simulation. Close agreement is demonstrated between the two
methods for instantaneous, ensemble-averaged profiles of temperature, density and spe-
cies mole fractions, as well as for the accumulated number of net reactions per cell.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The standard method for including chemical reactions in rarefied Direct Simulation Monte-Carlo (DSMC) solvers, the total
collision energy (TCE) method [1] suffers from a number of limitations. Firstly, it can only deal with reaction rates in the
Arrhenius form and thus cannot always represent chemical reaction rate data derived from theory or experiments. Secondly,
TCE can only be used with one particular collision model, the variable hard sphere model, and is thus limited to modelling a
gas with a ‘power-law’ viscosity l ¼ lrðT=TrÞx. In contrast, a typical continuum CFD solver may use reaction rate data in a
variety of functional forms, and may use a more realistic variation of viscosity with temperature. This could be important for
the development of hybrid continuum/DSMC solvers since the gas properties in the continuum solver are restricted to the
limited range allowed by the DSMC solver.

The limitations of TCE arise from the fact that it is a collision-based procedure in which chemical reactions can only occur
when simulator particles of the right kind are selected to undergo a collision. Although this seems to be well founded on
physical grounds, the collision selection procedures are dictated by the DSMC collision model which is itself an approxima-
tion; the distribution of collision energies is governed by the required average rate of momentum transfer (i.e. the simulation
gas viscosity). This distribution of collision energies may be plausible, but there is no guarantee that it is accurate enough to
. All rights reserved.
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reproduce experimentally observed reaction rates when combined with a simple steric factor (probability of reaction for a
given collision pair).

To overcome these difficulties the macroscopic chemistry method (MCM) was proposed by Lilley and Macrossan [2] and
refined by Goldsworthy et al. [3,4]. In this method, the rates of chemical reactions are largely decoupled from the collision
procedures; any collision models such as the Lennard-Jones or Morse potentials can be used. In MCM, chemical reactions are
computed by solving the chemical kinetic equations at the end of each time-step using macroscopic information obtained
from all the simulator particles in a cell, not just those selected for collisions. The macroscopic method has been used with
a variety of temperature and multi-temperature dependent reaction rates [2,5], and with reaction rates which depend on the
local density as well as temperature [2].

We have previously shown [3] that, because MCM assumes only that the steric factor is the same for equilibrium and non-
equilibrium conditions, it produces plausible non-equilibrium reaction rates. On the other hand, when TCE is applied in
highly non-equilibrium conditions, the reaction rates arise from a variation in the steric factor which has no basis in theory
or experiment but is dictated purely for reasons of mathematical tractability. Although this is not known to be a serious
problem with TCE, it is one that does not arise for MCM.

The macroscopic chemistry method has been extensively tested for steady flows [3–6], though it has not been applied to
unsteady flows. Important insight may be gained into the fluid dynamics of a particular problem by observing the transient
fluid motion. In some cases, the flow-field is inherently unsteady and transient simulations are necessary. Here we propose a
procedure for implementing MCM for unsteady flows. We test this procedure by calculating the unsteady flow in a shock
tube, for a ‘model’ reacting gas. We do not present this ‘model gas’ as an improved collision-based chemistry procedure
for DSMC, or to suggest that the reaction rates arising from this model are superior to those arising from other collision-
based chemistry procedures. We use the model to show that the macroscopic method can (a) reproduce approximate reac-
tion rates for any collision-based procedure for which the equilibrium reaction rates can be determined theoretically, and (b)
can do so for unsteady flows.

The model gas has two species. Species A may be converted to species B, or B into A, through the reactions
AþM ¢ BþM; where M ¼ A or B: ð1Þ
Here M is the collision partner. The A! B reaction is endothermic, with heat of reaction �Ea (� �kha). Except for their chem-
ical potential energy, species A and B molecules are assumed to be identical in all other respects. Note that we have chosen
not to compare MCM directly with TCE because here we are interested in testing the unsteady implementation of MCM
exclusively. We compare the MCM results with those from a particle-based chemistry procedure appropriate to this model
gas and guaranteed to return exactly the same reaction rates as MCM in steady flows.
2. Procedure for unsteady flows

The DSMC method is appropriate for a dilute gas assumption in which three body collisions may be ignored. For a general
reaction Aþ B! products, the rate of reactant depletion can be expressed as
D _NA ¼ kf NANB=V : ð2Þ
Here NA is the number of species A particles in a region of volume V and kf ðm3=sÞ is the reaction rate coefficient for the for-
ward reaction. In MCM, the required change, DNA ¼ D _NADt, in the number of a given species A over a computational time-
step Dt is calculated using an expression for D _NA similar to Eq. (2). Then the numbers of each species are adjusted to account
for this required DNA. For steady flows, NA and NB in Eq. (2) are replaced by their time-averaged values, �NA and �NB and this
leads to the correct reaction rate in the limit of a large sample. For unsteady flows, time-averaged values cannot be employed
and direct use of Eq. (2) would lead to incorrect ensemble-averaged reaction rates since �NANB– �NA

�NB.
A similar problem arises when setting the simulator collision rate in unsteady flows. The number of collisions per unit

time amongst N particles is proportional to NN=V . For steady flows, using the NTC method, Bird [7] set the collision rate
as proportional to N �N=V , where N is the instantaneous number of simulator particles in a cell, and �N=V is the latest
(time-averaged) estimate of the simulator number density. In contrast, Bird [8] has proposed that NðN � 1Þ=V be used in
place of N �N=V . He shows that if the fluctuations in N are distributed according to a Poisson distribution, then

�NðN� 1Þ ¼ �N �N and the correct collision rate is obtained. In unsteady simulations, for which the time-averaged number den-
sity �N=V is not available, we use the new procedure to set the collision rate and we model instantaneous chemical rates in a
similar way.

The net change in the number of simulator particles of species A, over a time-step Dt, due to the reaction AþM $ BþM
where M ¼ A;B is computed using
DNA ¼
1
2

kbM¼B NBðNB � 1Þ � kfM¼A
NAðNA � 1Þ þ 2 kbM¼A

� kfM¼B

� �
NANB

� �WDt
V

: ð3Þ
In this expression the term NAðNA � 1Þ is evaluated only for NA P 1 and similarly the term NBðNB � 1Þ is evaluated only for
NB P 1. W is the number of real particles represented by each DSMC simulator particle. Since Dt is necessarily smaller than
the mean collision time, DNA is usually a fractional number. Thus, the value of DNA is compared to a random fraction; a reaction
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is processed if the random number is larger than DNA. In the case where DNA > 1, bDNAc reactions are processed and if the
remaining fraction is greater than a random number, one more reaction is processed. This procedure ensures that there is
no delay in processing reactions and that the correct number of reactions are modelled in the limit of a large ensemble average.

When the reaction rate coefficient kf is given as a function of temperature, MCM uses the total energy of the simulator
particles in the cell to estimate the temperature required to evaluate kf . Here we use the variance of the sample population to
evaluate the kinetic temperature; the statistical implications of this are discussed in Section 5.

For a multi-species gas, the mean translational energy of species s is given by
Esh i ¼
ms

2N2
s

X
i¼x;y;z

Ns

X
v2

i �
X

vi

� �2
� 	

: ð4Þ
Here ms is the mass of one particle and Ns is the number of simulator particles representing species s in the cell. The overall
translational temperature follows as
T ¼ 2
3k

1
N

X
s

Ns Esh i
" #

; ð5Þ
where k is Boltzmann’s constant. When a reaction must be implemented in the macroscopic method, reactant particles (in
this case, selected at random from the cell) are converted into product species particles, while ensuring that the total mass,
momentum and kinetic energy of the products is the same as that for the reactants. The total net change in chemical energy
due to all reactions in a cell is removed from the thermal energy of all particles in the cell; thus the mean particle velocity
must be calculated in each cell at each time-step. The details of these procedures are given by Lilley and Macrossan [2]. The
calculation of the cell mean velocity and cell kinetic temperature, requires little computational expense. The procedure may
be added to a DSMC code by implementing a separate chemistry step after the calculation of collisions
move ! index ! collide ! chemistry:
Since DSMC and MCM, with the modified collision rate procedure [3], uses only information from the particles in a given cell
at the current time-step, the methods are readily applied to multiple independent simulations on parallel processor systems.

3. Chemical rate equations for the model gas

Except for their chemical potential energy, the A and B species of the model gas have the same properties as argon; they
have no rotational or vibrational energy storage modes. The variable hard sphere [1] (VHS) collision model is employed with
the modified NTC collision procedure, i.e. with NðN � 1Þ=V in place of N �N=V . The collision cross-section is such that the Chap-
man-Enskog viscosity is given by l ¼ lrðT=TrÞx, where lr ¼ 2:3� 10�5 (kg/m/s), Tr ¼ 300 K and x ¼ 0:72. The only reac-
tions are those in Eq. (1). The reaction rates are taken to be those produced by the following particle-based chemistry model.

In the particle chemistry model, Sf ¼ 0:2 and Sb ¼ 0:001. Let Ec be the centre of mass energy of the collision pair then:

(1) A—A pairs with Ec > Ea become B—A with probability Sf ,
(2) B—B pairs become A—B with probability Sb,
(3) A—B pairs with Ec > Ea become
(a) B—B with probability Sf ,
(b) A—A with probability Sb,
(4) A—B pairs with Ec < Ea become A—A with probability Sb.

In order to match the particle-based results with MCM, we require the theoretical reaction rate coefficient produced by
the particle method. The corresponding forward and backward reaction rate coefficients may be expressed as
kf ¼ ZcFSf and kb ¼ ZcSb: ð6Þ
Here F is the fraction of VHS collision pairs with collision energy greater than Ea and Zc ðm3=sÞ is the VHS collision constant.
Under thermal equilibrium conditions Zc is given by
Zc ¼
1
fs

15kTr

2lrð2:5�xÞð3:5�xÞ
Tr

T


 �x�1

; ð7Þ
where fs ¼ 2 for A—A and B—B collisions and fs ¼ 1 for A—B collisions, and F is given by
F ¼ Cð2:5�x; Ea=kTÞ: ð8Þ
Note that these rate coefficients are not in the simple Arrhenius form.
In MCM, the thermal equilibrium reaction rates evaluated from the given rate coefficients, in this case those in (6)–(8), are

multiplied by two ‘rate correction factors’ wZ and wF as described by Goldsworthy et al. [3]; this accounts for the deviation
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between the non-equilibrium collision rate for colliding particle pairs with Ec > Ea found in the MCM collision procedure and
the corresponding thermal equilibrium value derived from the cell temperature. Note that we could have implemented an
analytic model for the non-equilibrium reaction rate such as that given by Baras and Mansour [9]. Instead, the method em-
ployed here uses the actual non-equilibrium distribution as obtained from the DSMC simulation.

4. Shock-expansion tube simulation

We have applied the transient MCM procedures to simulations of an unsteady 1-D flow in a shock-expansion tube, filled
with the model gas described in Section 3. The initial condition consists of two regions, both at rest and with temperatures
T left ¼ 1000 K and Tright ¼ 100 K. The chemical activation temperature was ha ¼ 5000 K. The density q is uniform along the
tube and all cells are contain equal numbers of both species.

Results are normalized by a nominal mean free path kleft ¼ 2l=q�c where �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT=mp

p
is a characteristic thermal speed

and l is the gas viscosity, both evaluated for T ¼ T left. The characteristic time is sleft ¼ kleft=�c: Since the forward reaction rate
coefficient kf is independent of density, the normalized results apply to any density q.

Instantaneous results are output at t ¼ 500sleft. A total of 2000 computational cells (Dx ¼ 0:066kleft) span the domain.
Simulations using the particle and macroscopic chemistry methods with 5� 104 particles were run. For each case, results
from 1000 separate simulations were combined. Profiles of density, temperature and mole fraction of species A are shown
in Figs. 1–3 respectively.

MCM results are shown as solid lines; particle chemistry results are plotted every 25th cell using circles. No spatial or
time averaging is used. A shock wave has propagated from the high temperature (high pressure) region toward the low tem-
perature (low pressure) region a distance of approximately 28:5kleft. The shock wave spans almost 3:5kleft. An expansion
wave can be seen moving through the high temperature region. Neither the shock nor the expansion wave has been reflected
from the end walls at this elapsed time. Since both forward reactions are exothermic and have an activation temperature
Ea=k ¼ 5� T left, the forward reactions resulting in A! B transitions are much faster in the higher temperature region and
act to lower the temperature there. The reverse transitions B! A are endothermic and the rate at which they occur is pro-
portional to the collision rate. The temperature in the undisturbed region in front of the shock is slightly higher than the
initial value because of these endothermic reactions. The mole fraction of species A reaches a maximum value behind the
propagating shock wave where the high density and hence collision rate and relatively low temperature favour the B! A
reaction. It is apparent from these plots that a very close agreement is obtained between the MCM and particle-based chem-
istry methods.

The accumulated number of net reactions (forward reactions minus reverse reactions) per cell is shown in Fig. 4 where
close agreement can be seen between the particle and macroscopic chemistry methods. Unlike the previous figures, which
showed ensemble-averaged instantaneous results, Fig. 4 shows the accumulated number of reactions in each cell over the
entire simulation time. It can be seen that the forward reaction dominates in the high temperature regions (on the left)
and the reverse reaction dominates in the low temperature regions (on the right).
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Fig. 1. Ensemble-averaged density profiles at simulation time t ¼ 500sleft for macroscopic and particle-based chemistry simulations. Particle results are
shown for every 25th cell only.
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Fig. 2. Ensemble-averaged temperature profiles normalized by the initial temperature in the left region at simulation time t ¼ 500sleft for macroscopic and
particle-based chemistry simulations. The initial temperature ratio separating the left and right regions is 10. Particle results are shown for every 25th cell
only.
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Fig. 3. Ensemble-averaged profiles of species A mole fraction at t ¼ 500sleft. The initial condition consists of XA ¼ 0:5 throughout the entire domain. The rate
of exothermic A! B reactions increases rapidly with increasing temperature. The rate of the reverse endothermic reaction is proportional to the collision
rate. Particle results are shown for every 25th cell only.
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5. Discussion

MCM has been previously shown [2] to be more efficient than the TCE particle chemistry method in a 2-D blunt body
flow, in part because only net reactions are computed. The efficiency is highly dependent on the details of the problem.
For instance, MCM is more efficient as the number of reactions increases. For the simulations considered here MCM required
50% more CPU time than the particle-based method. However, this value does not indicate the true computational cost of the
new method for a number of reasons:
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Fig. 4. Accumulated number of net (forward minus reverse) reactions per cell during the unsteady simulation up to t ¼ 500sleft . Particle results are shown
for every 25th cell only.
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(1) We evaluated the reaction rate using Eqs. (6)–(8) at each DSMC time-step whereas in most practical applications, the
reaction rate would be implemented directly in a simpler mathematical form such as an Arrhenius rate. In that case
separate evaluation of Z and F which involves computation of the incomplete gamma function, would not be
necessary.

(2) We modelled only two reactions. Since the computational cost of re-distributing the chemical potential energy
amongst the particles in a cell is independent of the actual number of reactions occurring, the comparative cost of
MCM would be less for simulations involving many reactions.

(3) We considered only 1-D simulations at a relatively low density, for which the computational cost is almost entirely
due to the movement and collision (chemistry) routines. In higher dimensional simulations, the CPU time required
to locate and index particles increases and in higher density flows the CPU required to calculate non-reacting collision
events increases.

For all these reasons, the CPU time devoted to the MCM chemistry procedures is proportionally less in practical
applications.

Because we have matched MCM to the reaction rates produced by a particle method it should not be assumed that we
consider the particle method to be more accurate, or better able to match actual reaction rates produced by real molecules.
There are many unknowns involved in modelling reacting collisions in DSMC. In this state of ignorance we suggest the safest
thing to do is to use only that information which we do know, the equilibrium reaction rates derived from experiment or
theory, which MCM uses directly. MCM makes one other assumption to determine the reaction rates when the molecular
energy distribution departs from the equilibrium distribution for which the reaction rates are know; as discussed by Golds-
worthy et al. [3], the reaction rate is modified by the non-equilibrium fraction of collision pairs in the high energy portion of
the distribution. MCM assumes only that the steric factor, the probability that sufficiently energetic collisions will result in a
reaction, is the same in a non-equilibrium state as in the nearby equilibrium condition.

One further point should be mentioned. Even if real molecules behaved exactly as those of our model gas, it is possible
that, because of the finite sample size in DSMC, the reaction rate per particle might be different in the simulation from that in
the real gas. In MCM we could possibly account for this effect when we calculate the cell temperature by using the best esti-
mate of the unknown ‘parent population’ variance, i.e.

PN
i¼1ðxi � �xÞ2=ðN � 1Þ, rather than the finite sample variance which we

did use. This measure of cell temperature did produce slightly different results (not shown here). However the correct meth-
od is that which yields, in the limit of a large ensemble-averaged sample, results which are independent of the average num-
ber of particles per cell. Use of Eqs. (4) and (5) lead to identical (to within the scatter shown in the figures) results for large
accumulated samples regardless of the instantaneous number of simulator particles per cell used in each run. Use of the ‘par-
ent population’ variance lead to a dependence of the results on the number of simulator particles per cell. Hence, we have
used the instantaneous temperature when computing the reaction rates. All final (output) results were obtained by combin-
ing those from multiple independent DSMC simulations using the appropriate summation techniques as discussed by Garcia
[10].
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6. Conclusion

We have shown how the macroscopic chemistry method may be used to obtain results in agreement with a particle-
based chemistry method in an unsteady shock-expansion simulation. In traditional DSMC, macroscopic information in the
form of the number density is used to determine the simulator collision rate. The same information is needed in MCM to
set the reaction rates, and we have followed Bird in replacing the time-averaged simulator number density in a cell �N=V
by ðN � 1Þ=V in setting both the collision rate and the reaction rate in unsteady simulations where �N is unavailable.

In the macroscopic chemistry method we also use information from the kinetic energy of all the particles in the cell
(i.e. the kinetic temperature); similar information is obtained in the particle-based method by sampling of particle pairs
for possible collisions. In addition, the reaction rate in the particle-based method depends on the non-equilibrium distribu-
tion of particle energies in collision pairs; in MCM the analogous non-equilibrium information is extracted by comparing the
actual simulator particle collision rate for high energy pairs with the expected equilibrium value, and adjusting the reaction
rate accordingly.

The primary advantage of the macroscopic approach is that any general reaction rate data may be used with any DSMC
collision model, without the need for calibration; thus different reaction rate mechanisms involving large numbers of
reactions can be quickly implemented and compared.
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